
<--
 -- Sorry for my home page being such a mess, but I didn't found
the time
 -- to implement the "relaunch", yet.
 -- Anyway, hope you enjoy this:
 -->
 ���������
	 �������������� � ������	 ��������������� ���

Develop great applications using free-form forms with anti-aliasing and translucency

1. Overview

1. Overview
2. Intro
3. Motivation - Why this small tutorial?
4. What you should already Know
5. Getting Started
6. Dive Into
7. On The Way
8. Doing Artwork
9. Almost done - Done!

10. Outro

2. Intro

Hi there! First of all I like to introduce myself: I am Christian Blichmann, a 20 year-old
computer sciences student from germany, registered my account with delphi3000.com not
long ago.
I am programming in Delphi for about four years now and would describe my skills as an
intermediate hobbiest. Ok, 'nuff said:

3. Motivation - Why this small tutorial?

Yesterday, I was downloading and installing Winamp 3 beta 2.5 from the Nullsoft web site,
and among other things, I also downloaded a bunch of skins.
While trying these, I wondered, how the makers of this nifty little skin engine added support
for free-formed shapes. Even translucency (that's why we're here) is supported!

! " # $ % &(') * + , * + ' ' + - . ! & / $ % &

Page 1 of 17Translucency with Delphi 5 or newer <

30.01.2002file://D:\My%20Documents\Web%20Design\www.blichmann.de_raw%20content\Transl...

This is how some of the skins used by Winamp look alike.

Notice: you can even drag these skinnable window and - similiar to the pointer-shadow
feature of Windows 2000 - the shadow smoothly slides over the screen and anything
displayed beneath it.

Stunning, staring at my screen in utter disbelief ;-), I wanted to create a thing like this my
own, using a programming language that a hobbiest like me can understand (C/C++ is
IMHO very cryptical).

4. What you should already Know

That's always the problem with a tutorial: You simply cannot depend on the readers
knowledge, so I will try my best to make the explanations not too hard to understand, but
there are definitely some thing you should know when using this guide:

� The Pascal programming language, or better the Borland-variant Object Pascal
� How to use the Delphi IDE, especially the Object Inspector, Form Designer and

Code Editor, as well as maintaining and installing packages and components
� Experience with at least one of the following image editing programs: Adobe

Photoshop, The GIMP or PaintShop Pro. I will be using Adobe Photoshop 6, though
� Some knowledge of the Microsoft Win32 API is helpful, but not required.

Oh, I almost forgot: This will only work with Windows 2000/XP....

5. Getting Started

I suppose, you now want to see what I've created so far:
Download Executable (277 KB), or take a look for yourselves:

Page 2 of 17Translucency with Delphi 5 or newer <

30.01.2002file://D:\My%20Documents\Web%20Design\www.blichmann.de_raw%20content\Transl...

In this tutorial, we will create an app like this.

Other things you need to build the example app:

� The source distribution (318 KB) of my code. Includes executables with run-time
packages.
Note: This is freeware and comes "AS IS" (well as all the other things on this page
that are my work). It's also *not* commented, I will explain the source on this page.

� In my example, I'm using Graphics32 by Alex Denissov, "a freeware set of Delphi
classes and components optimized for fast 32-bit graphics" for loading and
manipulating 32bit bitmaps. I used v0.99d, but it should work with version 1.0 as
well.

� Yahoo! Group Graphics32 home page:
http://groups.yahoo.com/group/g32
They have other great stuff as well.

� Download:
http://groups.yahoo.com/group/g32/files/graphics32_1.0.zip (1092 KB)

� A reasonably modern image editing tool such as Adobe Photoshop.

Get a tryout from http://www.adobe.com/products/photoshop/tryreg.html (~41
MB).
You may also want to evaluate The GIMP, or PaintShop Pro.

I was using Adobe Photoshop 6 tryout to illustrate how it works, and The GIMP to do
the actual saving, since you cannot save with the tryout...

� And, of course, the Pascal-compiler: Borland Delphi 5.0 or higher (only tested there),
standard edition should be sufficient, may work on other versions as well
(particularly on Delphi 6.0, it has built-in support for some of the functions we will
use). WON'T WORK WITH KYLIX!
If you don't already own it, go grab a trial version from Borland.

6. Dive Into

When you have everything downloaded and installed in place, we can actually take a look
how I created the sample (I will give step by step instructions, so you can create the
application while reading):

First of all, create a new project with a new form in Delphi 5.0 like this (Using File|New

Page 3 of 17Translucency with Delphi 5 or newer <

30.01.2002file://D:\My%20Documents\Web%20Design\www.blichmann.de_raw%20content\Transl...

Application):

Note the ellipse around the BorderStyle, ClientWidth and ClientHeight properties.
Set them to bsNone / 200 pixels, respectively (our graphics will be that large).
Second, add a TButton and optionally a TLabel onto the form, we will use the button
later to activate the translucency.
Now, switch over to the editor, you will see some code like this:

uni t Unit2;

i nt er f ace

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs;

t ype
 TForm1 = cl ass(TForm)
 pr i vat e
 { Pr i vat e decl ar at i ons }
 publ i c
 { Publ i c decl ar at i ons }
 end;

var
 Form1: TForm1;

i mpl ement at i on

{ $R * . DFM}

end.

Page 4 of 17Translucency with Delphi 5 or newer <

30.01.2002file://D:\My%20Documents\Web%20Design\www.blichmann.de_raw%20content\Transl...

To support the things we now want do do, we have to define some constants and declare
some functions, that were obviously forgotten by Borland (they are included in Delphi 6, so
you should be able to skip this step on that IDE):

Ok, let's have a look on those functions (I will explain the parameters later on):

� SetLayeredWindowAttributes: This function activates a Windows 2000/XP-
feature called Layered Windows, which allows you to set the opacity and
transparency color key of a window.

� UpdateLayeredWindow: This function updates the position, size, shape, content,
and translucency of a layered window. The more sophisticated of the two, and more
memory efficient ;-)

But wait! How do I create a "Layered Window"? - Well that's quite easy done: Just call
SetWindowLong, passing the current form's Handle property and the GWL_EX_STYLE
constant as the first and second parameters. This indicates that you want to change the

{ . . . }
i mpl ement at i on

{ $R * . DFM}

{ I nser t her e }

const
 WS_EX_LAYERED = $80000;

 AC_SRC_OVER = $0;
 AC_SRC_ALPHA = $1;
 AC_SRC_NO_PREMULT_ALPHA = $1;
 AC_SRC_NO_ALPHA = $2;
 AC_DST_NO_PREMULT_ALPHA = $10;
 AC_DST_NO_ALPHA = $20;

 LWA_COLORKEY = $1;
 LWA_ALPHA = $2;

 ULW_COLORKEY = $1;
 ULW_ALPHA =$2;
 ULW_OPAQUE = $4;

f unct i on SetLayeredWindowAttributes(hwnd: HWND; crKey: TColor; bAlpha: byte;
 dwFlags: DWORD): BOOL; st dcal l ; ext er nal 'user32.dll';

f unct i on UpdateLayeredWindow(hwnd: HWND; hdcDst: HDC; pptDst: PPoint;
 psize: PSize; hdcSrc: HDC; pptSrc: PPoint; crKey: TColor;
 pblend: PBlendFunction; dwFlags: DWORD): BOOL; st dcal l ; ext er nal 'user32.dll';

{ I nser t End }

{ . . . }

Page 5 of 17Translucency with Delphi 5 or newer <

30.01.2002file://D:\My%20Documents\Web%20Design\www.blichmann.de_raw%20content\Transl...

form's extended window style. The third parameter should be WS_EX_LAYERED, which
actually makes the window a "layered" one.
You may wonder that if we update the extended window-style, the other (possible)
extended styles are gone - don't worry, SetWindowLong is cumulative, it just adds the
right bits to the existing extended style.
Now comes the alpha-blending stuff, insert the following into the OnClick-handler of the
button:

For maximum effect, you have to move the window by clicking and dragging anywhere in
the form, but by now you can't move it at all. To allow for window dragging, add the
following message handler to the form:

This will fool Windows into thinking that every part of your form is a window caption. Since
window captions usually move a window, our window is now movable.
If you compile and run our app, it will look similiar to this:

{ . . . }

pr ocedur e TForm1.Button1Click(Sender: TObject);
begi n
 { I nser t her e }
 Button1.Enabled := False;

 i f SetWindowLong(Handle, GWL_EXSTYLE, WS_EX_LAYERED) <> 0 t hen
 SetLayeredWindowAttributes(Handle, clNone, 128, LWA_ALPHA);
 { I nser t end }
end;

{ . . . }

 { . . . }
 pr ocedur e Button1Click(Sender: TObject);
 pr i vat e
 { I nser t her e }
 pr ocedur e WMNCHitTest(var Message: TWMNCHitTest); message WM_NCHITTEST;
 { I nser t end }
 publ i c
 end;
 { . . . }

i mpl ement at i on

{ . . . }

pr ocedur e TForm1.WMNCHitTest(var Message: TWMNCHitTest);
begi n
 Message.Result := HTCaption;
end;

{ . . . }

Page 6 of 17Translucency with Delphi 5 or newer <

30.01.2002file://D:\My%20Documents\Web%20Design\www.blichmann.de_raw%20content\Transl...

Pretty cool (but you might know this from Delphi 6, it has some properties of TForm, with
which you can also do things like that)!
Explanation: We called SetWindowLong and supplied the window-handle of our form (the
hwnd parameter from the declaration). The second parameter is used for the color key
only, which allows you to make those parts of your form that are of this color transparent
(i.e. you may click through!) - see below for details.
Now take a look at the third and fourth parameters, namely bAlpha and dwFlags. bAlpha
is the opacity value, ranged 0 (fully transparent) to 255 (opaque). I've chosen 128 (equals
to 50% blending) for the purposes of this example. The dwFlags parameter tells windows,
what you want to do: In this case, we wanted the whole window to be partially transparent,
so we use the LWA_ALPHA flag. That's it already, you can now play around (or even
animate the blending using a TTimer's OnClick event...) with the parameters.
A few words to the crKey: If you change the Color property of your form to clRed, you
can try this:

This will make everything of the form that is colored with clRed (or any other color you hav
chosen for both the Color property and the crKey parameter) transparent, and the rest is
blended with 50% opacity. This also gives you a hint at my Button1.Enabled :=
false-code, since otherwise you won't be able to move the window at all (this is because
Button1 receives and processes the mouse click *before* the window, hence you can't
move it anymore).

{ . . . }

i f SetWindowLong(Handle, GWL_EXSTYLE, WS_EX_LAYERED) <> 0 t hen
 SetLayeredWindowAttributes(Handle, cl Red, 128, LWA_ALPHA or LWA_COLORKEY);

{ . . . }

Page 7 of 17Translucency with Delphi 5 or newer <

30.01.2002file://D:\My%20Documents\Web%20Design\www.blichmann.de_raw%20content\Transl...

7. On The Way

By using SetLayeredWindowAttributes, you reach the border line quite easily.
You might say now:

 "But you promised a lot more than a simple alpha-blending, I could've done that myself".

This is because

1. it was meant as an introduction to the topic.
2. it belongs to Windows' "Layered Windows" feature, that I also wanted to explain.
3. you're impatient and don't want to read all this to the end.

The key to true translucency and free-form shapes lies in the UpdateLayeredWindow
function. Using this function you can achieve the same effects as in the previous sections
(this is what we will do first), but it is more complicated to initialize.
Ok, let's begin using it - delete or uncomment the code you have entered for Button1's
OnClick handler, and insert the following code:

{ . . . }

pr ocedur e TForm1.Button1Click(Sender: TObject);
{ Insert here }
var
 DC: HDC;
 BmpTopLeft, TopLeft: TPoint;
 Blend: TBlendFunction;
 BmpSize: TSize;
 WorkBmp: TBitmap;
{ Insert end }
begi n
 { Insert here }
 Button1.Enabled := False;

 { * 1* }
 i f SetWindowLong(Handle, GWL_EXSTYLE, WS_EX_LAYERED) = 0 t hen
 Exit;

 // This is to avoid compiler the warning:

Page 8 of 17Translucency with Delphi 5 or newer <

30.01.2002file://D:\My%20Documents\Web%20Design\www.blichmann.de_raw%20content\Transl...

I think you agree that this would not have been a good start for a tutorial...
Most of the stuff above, however, is about initializing and filling the necessary structures
and to set up an in-memory bitmap, so the code is pretty straight forward:

{ * 1* } First of all, we set this WS_EX_LAYERED style-bit from the previous section, and we
only continue if the bit was set successfully.

 // Variable 'WorkBmp' might not have been initialized
 WorkBmp := ni l ;

 t r y
 { * 2* }
 WorkBmp := TBitmap.Create;
 wi t h WorkBmp, Canvas, BmpSize do
 begi n
 cx := ClientWidth;
 cy := ClientHeight;

 PixelFormat := pf32Bit;
 Width := cx;
 Height := cy;

 CopyRect(Bounds(0, 0, cx, cy), GetFormImage.Canvas, Bounds(0, 0, cx, cy));
 end;

 TopLeft := BoundsRect.TopLeft;
 BmpTopLeft := Point(0, 0);

 { * 3* }
 DC := GetDC(0);
 i f not Win32Check(LongBool(DC)) t hen
 RaiseLastWin32Error;

 { * 4* }
 wi t h Blend do
 begi n
 BlendOp := AC_SRC_OVER;
 BlendFlags := 0;
 SourceConstantAlpha := 128;
 AlphaFormat := 0;
 end;

 { * 5* }
 i f not Win32Check(UpdateLayeredWindow(Handle, DC, @TopLeft, @BmpSize,
 WorkBmp.Canvas.Handle, @BmpTopLeft, clNone, @Blend, ULW_ALPHA)) t hen
 RaiseLastWin32Error;
 f i nal l y
 WorkBmp.Free;
 end;
 { Insert end }
end;

{ . . . }

Page 9 of 17Translucency with Delphi 5 or newer <

30.01.2002file://D:\My%20Documents\Web%20Design\www.blichmann.de_raw%20content\Transl...

{ * 2* } Secondly, we initialize an TBitmap to hold an image of our form, and set its Width
and Height through the member values of BmpSize, which is used to indicate how large
the part of the form that will be blended is. Next, we copy the contents of the whole form
into our newly created bitmap using TCanvas.CopyRect and TForm.GetFormImage.
Then TopLeft becomes a copy of our form's top-left corner coordinates and BmpTopLeft
is set to (0, 0), since we want the whole form image to be blended.
{ * 3* } At next, DC is assigned a display context of the entire screen by passing 0 as the
hWnd parameter of GetDC. If we fail to retrieve that DC, we raise an exception saying so
and abort this routine.

{ * 4* } We are now finally about to set up the blending options (the pBlend parameter)!
Most parts of this record are initialized to their default values: BlendOp currently ony
supports AC_SRC_OVER and BlendFlags is currently reserved (0).
That leaves SourceConstantAlpha and AlphaFormat: The first has the same meaning
as bAlpha from SetLayeredWindowAttributes, while the latter controls whether we
use per-pixel alpha-blending or a constant opacity throughout the window (for that reason
we later use AlphaFormat with value AC_SRC_ALPHA).

{ * 5* } Almost finished: here we finally call UpdateLayeredWindow, passing the form's
Handle, the screen surface (DC), the area to use (TopLeft and BmpSize, both measured
relative to the top-left corner of DC), the source coordinates along with the color-key
(BmpTopLeft, clNone) and the blend function to use (Blend). With ULW_ALPHA, we
indicate that we want to use the blend function. You may also or this with ULW_COLORKEY
to make everything colored in crKeys transparent.

If everything went right during compilation, you will see something like this (after clicking
the button of course):

8. Doing Artwork

Ok, minimize Delphi for a while, and open Photoshop or your favorite image editing tool.
To achieve the desired effect, we have to create two bitmaps:

1. The image that you want to display (i.e. the skin background)
2. An image-mask, a (mostly) gray bitmap that will serve the per-pixel alpha values

Let begin with the skin background (in this example I will create a small, filled circle with a
"drop shadow"). Our window in the previous sections was 200x200 pixels wide, so we
should start by creating an image that big (use a "White" background):

Page 10 of 17Translucency with Delphi 5 or newer <

30.01.2002file://D:\My%20Documents\Web%20Design\www.blichmann.de_raw%20content\Transl...

Next, create four new guides 8 pixels from the border of the image. To do this, first create a
small selection (anywhere in the image) that is 8 pixels tall and wide (you can use the Info
tool window to view the current selection size). If this is tricky (mostly because of bad eyes
and/or a screen resolution that is to large (24" Monitor...) ;-), try zooming in to about 400%.
Then, drag your selection to the upper-left corner (assuming you have "View | Snap To |
All" activated). You can now create the guides by dragging them from the ruler down to the
lower edge of your selection.
Repeat this procedure until you have all four guides created:

Create a new layer either by using "Layer | New | Layer" or by pressing <Ctrl>+<Shift>+N.
Then, using the "Elliptical Marquee Tool", draw a perfectly round selection from the upper-
left to the lower-right, and fill it with #FFCC00 (peach orange if we were under X11).
In the "Layers" tab, double-click on your newly created "Layer 1", to add a "drop shadow":

Page 11 of 17Translucency with Delphi 5 or newer <

30.01.2002file://D:\My%20Documents\Web%20Design\www.blichmann.de_raw%20content\Transl...

By double-clicking you should've opened the "Layer Style" dialog and select the options
marked in red (set all other settings to their defaults):

If you applied the settings in "Layer Style", we are done for the first image.
Save it with "File | Save" to make a Photoshop-backup for later use, but don't close it, yet.

The image-mask: In the "Channels" tab, right-click "Blue" (for this example this works, with
other graphics it might not) and select "Duplicate" - Photoshop will display a blue-only view
then:

Page 12 of 17Translucency with Delphi 5 or newer <

30.01.2002file://D:\My%20Documents\Web%20Design\www.blichmann.de_raw%20content\Transl...

In the "Duplicate Channel" dialog, select "New" from the "Document" combobox. Name it
"circle_alpha" and select "Invert", then click "OK".
Don't close the original "circle", yet.
Change the color depth of your image-mask to 8 bit by using "Image | Mode | Grayscale"
and export the new file to "circle_alpha.bmp" using "File | Save As..." and by specifying the
"BMP" format.
By the way, save the file to the folder where you have created your delphi project, or better:
where the executable will be placed.
Select "Windows" and "24 bit" in the upcomming dialog.

The work area should look like this now:

Just a few step remain: Click the "Background" layer of you original circle, and fill it with
black (#000000):

Page 13 of 17Translucency with Delphi 5 or newer <

30.01.2002file://D:\My%20Documents\Web%20Design\www.blichmann.de_raw%20content\Transl...

Export your circle using "File | Save as..." again, but this time select "As a copy" and, again,
the "BMP" format. Choose "circle.bmp" as the filename and select "Windows" and "24 bit"
in the upcomming dialog.

That's it, you've successfully created the skin background and its alpha channel. I know
that this is by far not the optimum of doing this in Photoshop, and that we waste space by
saving both bitmaps with 24 bits per pixel, *but*: This is just a basic tutorial of how things
like this work. In the next section we will waste even more space, but for the purposes of
example, this is just fine. You can tune your app later.

9. Almost Done - Done!

Did I lose you? - I hope not, because now it gets interesting - we're on the final steps:
Switch back to Delphi (close Photoshop if you want, we won't need it here) and change the
source code to look like this:

uni t Form1;

{ . . . }

i mpl ement at i on

{ I nser t her e }
uses
 { * A* }
 G32, G32_Filters; // This includes parts of the Graphics32 Library
{ I nser t end }

{ $R * . DFM}

{ . . . }

pr ocedur e TForm1.Button1Click(Sender: TObject);
var
 { I nser t her e }
 { * B* }
 AlphaBmp, SkinBmp: TBitmap32;

Page 14 of 17Translucency with Delphi 5 or newer <

30.01.2002file://D:\My%20Documents\Web%20Design\www.blichmann.de_raw%20content\Transl...

 { I nser t end }
 DC: HDC;
 BmpTopLeft, TopLeft: TPoint;
 Blend: TBlendFunction;
 BmpSize: TSize;
 WorkBmp: TBitmap;
begi n
 Button1.Enabled := False;

 { * 1* }
 i f SetWindowLong(Handle, GWL_EXSTYLE, WS_EX_LAYERED) = 0 t hen
 Exit;

 // This is to avoid compiler the warning:
 // Variable 'WorkBmp' might not have been initialized
 WorkBmp := ni l ;
 { I nser t her e }
 AlphaBmp := ni l ;
 SkinBmp := ni l ;
 { I nser t end }

 t r y
 { * 2* }
 WorkBmp := TBitmap.Create;
 wi t h WorkBmp, Canvas, BmpSize do
 begi n
 cx := ClientWidth;
 cy := ClientHeight;

 PixelFormat := pf32Bit;
 Width := cx;
 Height := cy;

 { Comment t hi s out , or del et e: }
 / / CopyRect (Bounds(0, 0, cx, cy) , Get For mI mage. Canvas, Bounds(0, 0, cx, cy)) ;
 { Comment t hi s out end }
 end;

 { I nser t her e }
 { * C* }
 AlphaBmp := TBitmap32.Create;
 AlphaBmp.LoadFromFile('circle_alpha.bmp');

 SkinBmp := TBitmap32.Create;
 wi t h SkinBmp do
 begi n
 LoadFromFile('circle.bmp');
 { * D* }
 IntensityToAlpha(SkinBmp, AlphaBmp);

 DrawTo(WorkBmp.Canvas.Handle, 0, 0);
 end;

 { I nser t end }
 TopLeft := BoundsRect.TopLeft;
 BmpTopLeft := Point(0, 0);

Page 15 of 17Translucency with Delphi 5 or newer <

30.01.2002file://D:\My%20Documents\Web%20Design\www.blichmann.de_raw%20content\Transl...

This is, what the changes do:

In { * A* } , we simply include the Graphics32 library (just in case you wondered, why I
requested you to download it at the beginning...).

{ * B* } : We need two more bitmaps, one for loading the skin background (SkinBmp) and
one as an alpha image-mask (AlphaBmp). The Bitmap32 is the core component of the
Graphics32 library. It has a lots of other cool stuff included: Anti-aliased lines with/without
clipping, alpha-blending (but this time not intended for real-time UI-windows) and much
more, I could almost write a book about it. And of course :-), everything works with MMX...
Enough advertising, in { * C* } , we load our image-mask and the skin background, just as
we would do with a standard TBitmap.

{ * D* } , however, is crucial to the functionality we want to provide: IntensityToAlpha
takes every single pixel of our image-mask and recombines it with our SkinBmp, so that
the alpha value of a pixel in SkinBmp corresponds to the color intensity of a pixel in
AlphaBmp. Once more: white pixels that equal to a value of 255 (in an 8 bit grayscale
image) in the image-mask correspond to an alpha value of 255 (opaque), while black
image-mask pixels result in an alpha value of 0 (fully transparent).
This even works with colored image-masks, because it calculates a weighted color intensity
using the same method that is used in your graphics adapter's BIOS.

 { * 3* }
 DC := GetDC(0);
 i f not Win32Check(LongBool(DC)) t hen
 RaiseLastWin32Error;

 { * 4* }
 wi t h Blend do
 begi n
 BlendOp := AC_SRC_OVER;
 BlendFlags := 0;
 { Change her e }
 { * E* }
 SourceConstantAlpha := { * } 255{ * } ;
 AlphaFormat := { * } AC_SRC_ALPHA{ * } ;
 { Change end }
 end;

 { * 5* }
 i f not Win32Check(UpdateLayeredWindow(Handle, DC, @TopLeft, @BmpSize,
 WorkBmp.Canvas.Handle, @BmpTopLeft, clNone, @Blend, ULW_ALPHA)) t hen
 RaiseLastWin32Error;
 f i nal l y
 WorkBmp.Free;
 { I nser t her e }
 AlphaBmp.Free;
 SkinBmp.Free;
 { I nser t end }
 end;
end;

{ . . . }

Page 16 of 17Translucency with Delphi 5 or newer <

30.01.2002file://D:\My%20Documents\Web%20Design\www.blichmann.de_raw%20content\Transl...

To activate per-pixel alpha blending, we have to change the value of
SourceConstantAlpha to 255 (opaque), and change the value of AlphaFormat to
AC_SRC_ALPHA.

To test our new per-pixel alpha, simply compile and run it with Delphi.
If everything went ok, the program now has a smoothed, anti-aliased edge with a "drop
shadow"!

10. Outro

Congratulations! You have succesfully build an application with a window that is draggable,
has smooth, anti-aliased edges, and that "drops" a shadow on your screen.
this does not run on Windows 98/ME and it is intended for use with Windows 2000 and
Windows XP, only.

I hope you had as much fun reading and trying as I had writing this tutorial.
If you create something useful with it, let me know. Depending on the feedback I get, I will
eventually create some VCL-components for use with your applications.

Have fun!

Christian Blichmann

PS: The source distribution accompanying my tutorial include built executables and some
more samples...

Don't hesitate - email me with your thoughts:
 feedback@blichmann.de

Page 17 of 17Translucency with Delphi 5 or newer <

30.01.2002file://D:\My%20Documents\Web%20Design\www.blichmann.de_raw%20content\Transl...

